Runtime Helper¶
-
class
vortex.runtime.helper.
InferenceHelper
(model)¶ -
__call__
(*args, **kwargs)¶ Run and visualize
- Returns
dictionary containing ‘prediction’ and optionally ‘visualization’
- Return type
-
class
Visual
(class_names)¶ Helper class for to load images, inference, and visualization for convinience
-
classmethod
draw
(result: dict, vis: numpy.ndarray, class_names=None, color_map=None)¶ draw single prediction result on vis
- Parameters
result (dict) – single prediction result
vis (np.ndarray) – array in which prediction result is to be visualized
class_names (mapping, optional) – mapping from int label to human-readable str. Defaults to None.
color_map (mapping, optional) – mapping from int to colors. Defaults to colors.
- Returns
array with visualiazation
- Return type
np.ndarray
-
classmethod
draw_bbox
(vis: numpy.ndarray, tl: Tuple[int, int], rb: Tuple[int, int], color: Tuple[int, int, int] = (255, 0, 0))¶ draw bounding box on vis
- Parameters
- Returns
image with bbox visualized
- Return type
np.ndarray
-
classmethod
draw_bboxes
(vis: numpy.ndarray, bboxes, classes, confidences, color_map=None, class_names=None)¶ draw multiple bounding box on vis
- Parameters
vis (np.ndarray) – array in which bounding box is to be visualized
bboxes (iterable of tuple) – bounding boxes to be visualized
classes (iterable of int) – list of classes corresponding to each bounding box
confidences (iterable of float) – list of confidences corresponding to each bounding box
color_map (mapping, optional) – mapping from class to color. Defaults to None.
class_names (mapping, optional) – mapping from class to str represnting human-readable class name. Defaults to None.
- Returns
array with visualization
- Return type
np.ndarray
-
classmethod
draw_label
(vis, obj_class, confidence, bl, color, class_names=None)¶ draw single label on vis
- Parameters
vis (np.ndarray) – array in which label is to be visualized
obj_class (integer) – object class/label
confidence (scalar) – object confidence
bl (tuple) – bottom-left point to visualize label
color (tuple) – desired color to visualize label
class_names (mapping, optional) – mapping from int label to human-readable str. Defaults to None.
- Returns
array with visualiazation
- Return type
np.ndarray
-
classmethod
draw_labels
(vis, obj_classes, confidences, bls: Sequence[Tuple[int, int]], color_map=None, class_names=None)¶ draw multiple labels on vis
- Parameters
vis (np.ndarray) – array in which label is to be visualized
obj_classes (iterable) – object classes/labels
confidences (iterable) – object confidences
bls (Sequence[Tuple[int,int]]) – bottom-left points corresponding to each label to be visualized
color_map (mapping, optional) – mapping from int to colors. Defaults to colors.
class_names (mapping, optional) – mapping from int label to human-readable str. Defaults to None.
- Returns
array with visualiazation
- Return type
np.ndarray
-
classmethod
draw_landmarks
(vis: numpy.ndarray, landmarks, color: Optional[Tuple[int, int, int]] = None, radius=2, thickness=- 1)¶ draw multiple landmarks on vis
- Parameters
vis (np.ndarray) – array in which landmarks are to be visualized
landmarks (np.ndarray) – landmarks to be visualized
color (Tuple[int,int,int], optional) – desired color of point for visualization. Defaults to None.
radius (int, optional) – desired radius of point for visualization. Defaults to 2.
thickness (int, optional) – desired thickness of point for visualization. Defaults to -1.
- Returns
array with visualization
- Return type
np.ndarray
-
classmethod
visualize
(batch_vis: List, batch_results: List, class_names=None) → List¶ draw batched prediction result on vis
- Parameters
batch_vis (List) – batch image for visualization
batch_results (List) – batched prediction result
class_names (mapping, optional) – mapping from int label to human-readable str. Defaults to None.
- Returns
array with visualiazation
- Return type
np.ndarray
-
classmethod
visualize_result
(vis: numpy.ndarray, results: List[Dict[str, numpy.ndarray]], class_names=None, color_map=None)¶ draw single-batch prediction result on vis
- Parameters
vis (np.ndarray) – array in which prediction result is to be visualized
results (List[Dict[str,np.ndarray]]) – single-batch prediction result
class_names (mapping, optional) – mapping from int label to human-readable str. Defaults to None.
color_map (mapping, optional) – mapping from int to colors. Defaults to colors.
- Returns
array with visualiazation
- Return type
np.ndarray
-
classmethod
-
classmethod
adjust_coordinates
(batch_vis, batch_results, coordinate_fmt='relative')¶ adjust prediction results for visualization
-
static
create_runtime_model
(**kwargs)¶ helper method to instantiate model
- Returns
wrapped model
- Return type
-
classmethod
load_images
(images)¶ load images from list of files
-
classmethod
run_and_visualize
(model, images: Union[List[str], numpy.ndarray], output_coordinate_format: str = 'relative', visualize: bool = False, dump_visual: bool = False, output_dir: Union[str, pathlib.Path] = '.', class_names=None, visual=None, **kwargs) → dict¶ run inference on model with given images paths
- Parameters
model (vrt.BaseRuntime) – vorted rt model
images (Union[List[str],np.ndarray]) – list of image’s path
output_coordinate_format (str, optional) – output coordinate format. Defaults to ‘relative’.
visualize (bool, optional) – visualize output. Defaults to False.
dump_visual (bool, optional) – save images. Defaults to False.
output_dir (Union[str,Path], optional) – output directory. Defaults to ‘.’.
- Returns
prediction results
- Return type
-
classmethod
run_inference
(model, batch_imgs, **kwargs)¶ run inference on batched (possibly non-uniform size) image
- Parameters
model (runtime) – vortex rt model
batch_imgs (list) – list image for inference
- Returns
list of dictionary corresponding to each image
- Return type
list of dict
-
classmethod
save_images
(filenames: List, batch_vis: List, output_dir: Union[str, pathlib.Path] = '.', output_file_prefix='prediction')¶ save images
- Parameters
- Returns
output filenames
- Return type
-